On the Structure of the Selberg Class, Iii: Sarnak’s Rigidity Conjecture
نویسندگان
چکیده
We further recall that under Selberg orthonormality conjecture, has unique factorization into primitive functions, the only primitive function with a pole at s = 1 is the Riemann zeta function ζ(s), and Fθ(s) is a primitive function if θ ∈R and if F ∈ are primitive and entire (see [4, Section 4]). We say a primitive function F ∈ is normal if θF = 0. Assuming Selberg orthonormality conjecture, we normalize any primitive function F ∈ in the following way:
منابع مشابه
Sarnak’s Conjecture about Möbius Function Randomness in Deterministic Dynamical Systems
The thesis in hand deals with a conjecture of Sarnak from 2010 about the orthogonality of sequences induced by deterministic dynamical systems to the Möbius μ-function. Its main results are the ergodic theorem with Möbius weights, which is a measure theoretic (weaker) version of Sarnak’s conjecture, and the already assured validity of Sarnak’s conjecture in special cases, where we have exemplar...
متن کاملClass Numbers of Orders in Quartic Fields
as x → ∞, where L(x) is the function L(x) = ∫ x 1 e t dt. Sarnak established this result by identifying the regulators with lengths of closed geodesics of the modular curve SL2(Z)\H, where H denotes the upper half-plane, and using the Prime Geodesic Theorem for this Riemannian surface. Actually Sarnak proved not this result but the analogue where h(O) is replaced by the class number in the narr...
متن کاملFrankl's Conjecture for a subclass of semimodular lattices
In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...
متن کاملA short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملOn a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group
Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999